A Novel Generic Hebbian Ordering-Based Fuzzy Rule Base Reduction Approach to Mamdani Neuro-Fuzzy System
نویسندگان
چکیده
There are two important issues in neuro-fuzzy modeling: (1) interpretability--the ability to describe the behavior of the system in an interpretable way--and (2) accuracy--the ability to approximate the outcome of the system accurately. As these two objectives usually exert contradictory requirements on the neuro-fuzzy model, certain compromise has to be undertaken. This letter proposes a novel rule reduction algorithm, namely, Hebb rule reduction, and an iterative tuning process to balance interpretability and accuracy. The Hebb rule reduction algorithm uses Hebbian ordering, which represents the degree of coverage of the samples by the rule, as an importance measure of each rule to merge the membership functions and hence reduces the number of the rules. Similar membership functions (MFs) are merged by a specified similarity measure in an order of Hebbian importance, and the resultant equivalent rules are deleted from the rule base. The rule with a higher Hebbian importance will be retained among a set of rules. The MFs are tuned through the least mean square (LMS) algorithm to reduce the modeling error. The tuning of the MFs and the reduction of the rules proceed iteratively to achieve a balance between interpretability and accuracy. Three published data sets by Nakanishi (Nakanishi, Turksen, & Sugeno, 1993), the Pat synthetic data set (Pal, Mitra, & Mitra, 2003), and the traffic flow density prediction data set are used as benchmarks to demonstrate the effectiveness of the proposed method. Good interpretability, as well as high modeling accuracy, are derivable simultaneously and are suitably benchmarked against other well-established neuro-fuzzy models.
منابع مشابه
A trainable transparent universal approximator for defuzzification in Mamdani-type neuro-fuzzy controllers
A novel technique of designing application specific defuzzification strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzification approximator is validated by showing the convergence when approximating several existing defuzzification strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. T...
متن کاملA novel brain-inspired neuro-fuzzy hybrid system for artificial ventilation modeling
Artificial ventilation is a crucial supporting treatment for Intensive Care Unit. However, as the ventilator control becomes increasingly more complex, it is non-trivial for less experienced clinicians to control the settings. In this paper, the novel Hebbian based Rule Reduction (HeRR) neuro-fuzzy system is applied to model this control problem for intra-patient and inter-patient ventilator co...
متن کاملA Trainable Transparent Universal Approximator for Defuzzi cation in Mamdani Type Neuro-Fuzzy Controllers
|A novel technique of designing application speci c defuzzi cation strategies with neural learning is presented. The proposed neural architecture considered as a universal defuzzi cation approximator is validated by showing the convergence when approximating several existing defuzzi cation strategies. The method is successfully tested with fuzzy controlled reverse driving of a model truck. The ...
متن کاملOptimized Hybrid Fuzzy Fed PID Control of Nonlinear Systems
The design of controllers for nonlinear systems in industry is a complex and difficult task. One approach which has shown promise for solving nonlinear control problems is the use of fuzzy logic control. This paper proposes a new method utilizing proportional–integral-derivative (PID) control as a hybrid fuzzy PID controller for nonlinear system. The salient feature of the proposed approach is ...
متن کاملNeuro-fuzzy control based on the NEFCON-model: recent developments
Fuzzy systems are currently being used in a wide field of industrial and scientific applications. Since the design and especially the optimization process of fuzzy systems can be very time consuming, it is convenient to have algorithms which construct and optimize them automatically. One popular approach is to combine fuzzy systems with learning techniques derived from neural networks. Such app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 19 6 شماره
صفحات -
تاریخ انتشار 2007